Invited talk at EuroNanoForum 2017 by the EMMC (European Material Modelling Council). 

Abstract: The integration of modelling and simulations techniques to support material selection and design process is more and more impelling in the materials science and industrial domains, due to the need of effectively designing and producing increasingly sophisticated materials, components and systems with advanced performance on a competitive time scale. In this perspective, for complex structural materials there is a particular need in industry for chemistry/physics-based materials models and modelling workflows that fulfil the following requirements: i) predicting relevant properties and key performance indicators that capture the performance of materials, accounting for material internal microstructure and effects of processing and ii) accuracy/validation of predicted data, and relevant management of uncertainty. Materials selection and structural design are fundamentally goal-oriented, aimed at identifying material structures and processing paths that deliver required properties and performance. To be reliable, this process must be built upon a physical and engineering framework and based upon methods that are systemic, effective and efficient in modelling complex, hierarchical materials. For material design and selection, understanding and quantifying the links between material microstructure and their macroscopic effects is, therefore, essential. In parallel, high performance requires not only comprehensive material properties modellng but also understanding of risks, costs, and business opportunities for a range of decisions, from material selection to designing functional structural components and systems, and for process optimization. Last but not least, design and selection of must also accommodate societal requirements for health and sustainability. In my presentation, I will talk about the connection between material modelling and business processes where the coupling between performance, material, manufacturing process, cost, market and societal requirements constraints are exploited.

Click here to upload the presentation. 

Main Fields of Interest: Composite Material and Structure, Computational Mechanics, Materials by Design.